

Solve
$$-8 < 4 - 2x \le 6$$
 $-8 < -2x + 4 \le 6$

Subtract 4
 $-8 - 4 < -2x + 4 - 4 \le 6 - 4$
 $-12 < -2x \le 2$

Divide by -2
 $-\frac{12}{-2} > \frac{-2}{-2} \times 2 \cdot \frac{2}{-2}$
 $6 > x \ge -1 \implies -1 \le x < 6$

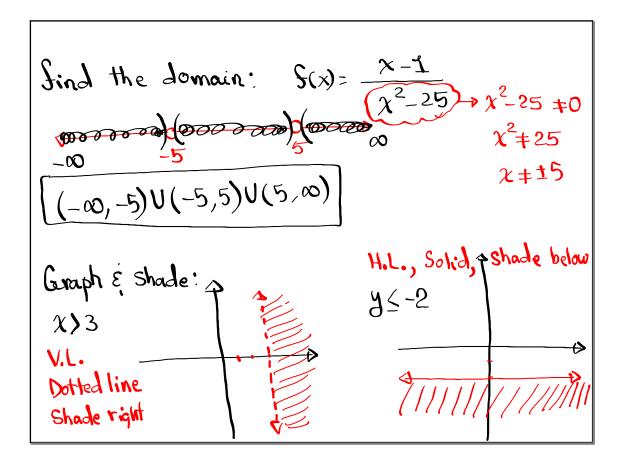
Grophing

I.N. $[-1,6)$ S.B.N. $[x] -1 \le x < 6$

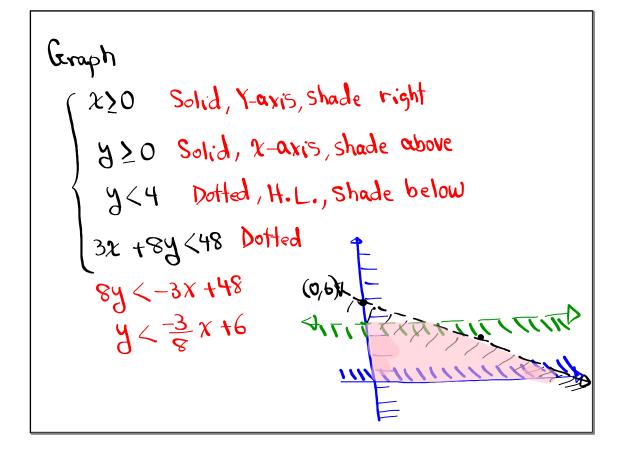
A=
$$\{2,3,4,5\}$$

B= $\{4,5,6,7\}$

Find


I) AUB = $\{2,3,4,5,4,5,4,5,6,7\}$ => AUB= $\{2,3,4,5,6,7\}$

2) A NB = $\{4,5\}$


Sind the domain: $S(x) = \frac{x-1}{(x-5)} \rightarrow x-5+0$

All Reals except 5

 $x \neq 5$
 $-\infty$
 $(-\infty,5)U(5,\infty)$

Caraph the Solution
$$-3y > 2x + 21$$

 $2x - 3y > 21$ $\frac{-3}{-3}y < \frac{-2}{-3}x + \frac{21}{-3}$
Hint: write in $3 < \frac{2}{3}x - 1$
Slope-Int Form. $3 < \frac{2}{3}x - 1$
 $3 < \frac{2}{3}x - 1$
Slant line, Dotted line, Shade below

Sind equation of a line that contains

the point
$$(5, -3)$$
 with

1) Zero Slope x_1 y_1

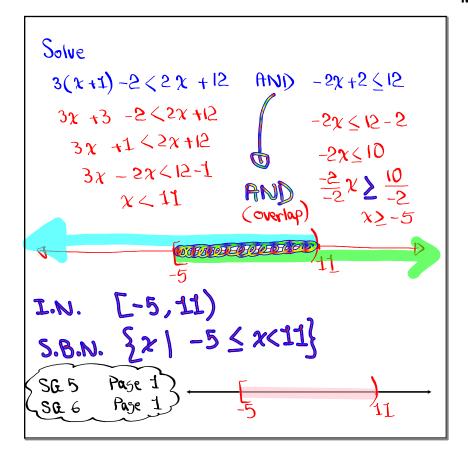
Horizontal => Y-only => y_2-3

line

2) No Slope

Vertical $\Rightarrow x-only \Rightarrow x=5$

line


3) with Slope $\frac{3}{5}$.

Point = slope Sormula

 $y - y = m(x-x)$
 $y - 3 = \frac{3}{5}(x-5)$
 $y + 3 = \frac{3}{5}x - \frac{3}{5}$.

SG 43

Solve
$$2(x-3)+4<-10$$
 OR $4x+8 \le 6x-4$ $2x-6+4<-10$ $4x-6x \le -4-8$ $2x-6+10$ $2x \le -10$ $2x \le -10$


```
Absolute Value equations:

Type I: |ax+b|=K

T$ K<0, there is no solution

T$ K\geq 0, then solve

ax+b=K

OR ax+b=-K

Place Sinal Solution in a Solution Set.

Solve |x-2|=5

No solution

Solve |x-2|=5

x-2=5

OR x-2=-5

x=7

x=3

x=3

x=3
```

Solve
$$|2\chi + 3| = -9$$

No Solution $\Rightarrow \emptyset$
Solve $|2\chi + 3| = 9$
 $|2\chi + 3| = -9$
 $|\chi + 3| = -9$
 $|\chi + 3| = -9$

Solve
$$|3x + 5| + 8 = 2$$
 Hint: Isolate the abs. Value $|3x + 5| = 2 - 8$
 $|3x + 5| = -6 \Rightarrow No$ Solution $\Rightarrow \Phi$
Solve $|3x + 5| + 8 = 12$
 $|3x + 5| = 12 - 8$
 $|3x + 5| = 4$
 $|3x + 5| = 4$

Solve
$$-2|2\chi-3|+10=-8$$
Always

 $-2|2\chi-3|=-8-10$
Abs. Value.

 $-2\cdot|2\chi-3|=-18$
 $|2\chi-3|=-18$
 $|2\chi-3|=9$
 $2\chi-3=9$
 $0R$
 $2\chi=9$
 $2\chi=12$
 $2\chi=6$
 $\chi=6$

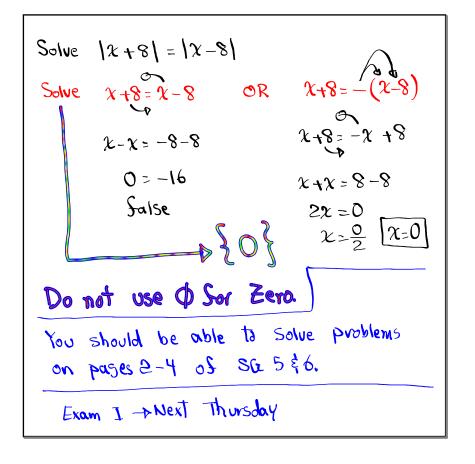
Abs. Value Equations:

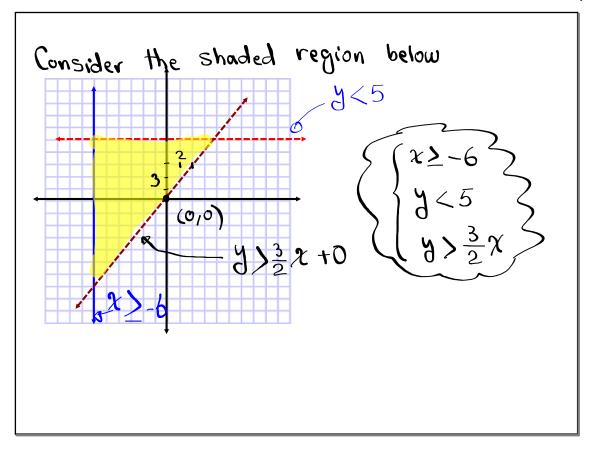
Type II!
$$|0x+b| = |cx+d|$$

Solve
 $0x+b=cx+d$ OR $0x+b=-(cx+d)$

Final Answers in a Solution Set

Solve $|2x-3|=|x+5|$
 $|2x-3|=x+5|$
 $|2x-3|=x+5|$


Solve


Solve

$$3x + 2 = 2x + 3$$
 $3x + 2 = 2x + 3$
 $3x - 2x = 3 - 2$
 $3x + 2 = -2x - 3$
 $3x + 2x = -3 - 2$
 $3x + 2x = -3 - 2$
 $5x = -5$

Solution Set

 $x = 1$

Simplify:
$$\frac{\chi^{2} - 4\chi}{\chi^{2} - 16} = \frac{\chi(\chi - 4)}{(\chi + 4)(\chi - 4)}$$

$$= \frac{\chi}{\chi + 4}$$
Simplify: $\frac{\chi^{2} - 25}{\chi^{2} - 10\chi + 25} = \frac{(\chi + 5)(\chi - 5)}{(\chi - 5)(\chi - 5)}$

$$= \frac{\chi}{\chi + 5}$$

Simplify
$$\frac{\chi^{2}-7\chi+12}{\chi^{2}-9} \cdot \frac{\chi^{2}+8\chi+16}{\chi^{2}+4\chi}$$

$$= \frac{\chi^{2}-7\chi+12}{\chi^{2}-9} \cdot \frac{\chi^{2}+4\chi}{\chi^{2}+8\chi+16}$$

$$= \frac{(\chi-3)(\chi-4)}{(\chi+3)(\chi-3)} \cdot \frac{\chi(\chi+4)}{(\chi+4)(\chi+4)} = \frac{\chi(\chi-4)}{(\chi+3)(\chi+4)}$$

Simplify
$$\frac{2}{3} - \frac{1}{5}$$
:

 $\frac{2 \cdot 5}{3 \cdot 5} - \frac{1 \cdot 3}{5 \cdot 3} = \frac{10}{15} - \frac{3}{15}$
 $\frac{10 - 3}{15} = \frac{1}{15}$

Simplify $\frac{2}{\chi - 3} - \frac{1}{\chi + 5} = \frac{2(\chi + 5)}{(\chi + 3)(\chi + 5)} = \frac{2(\chi + 5)}{(\chi - 3)(\chi + 5)}$

Work on $\frac{2(\chi + 5) - 1(\chi - 3)}{(\chi - 3)(\chi + 5)} = \frac{2\chi + 10 - \chi + 3}{(\chi - 3)(\chi + 5)}$
 $\frac{\chi}{(\chi - 3)(\chi + 5)} = \frac{\chi}{(\chi - 3)(\chi + 5)}$

Class QZ 5

1) Graph and Shade

$$-2y < -3x + 8$$

$$4 > \frac{-3}{-2}x + \frac{8}{-2}$$

$$4 > \frac{3}{2}x - 4$$

$$\frac{3}{2}\chi^{-4}$$

2) Sactor

$$4\chi - 36$$